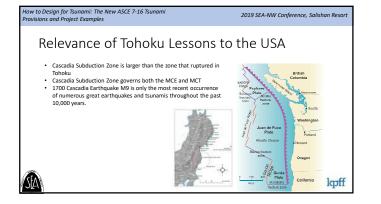
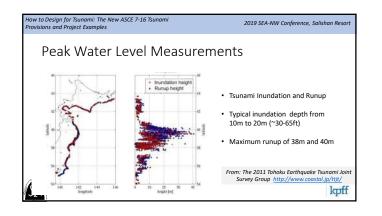
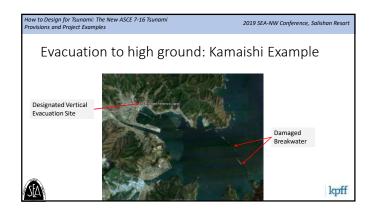
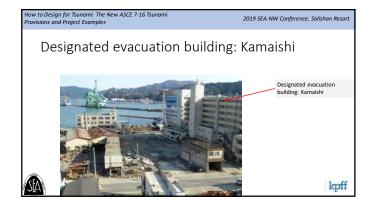


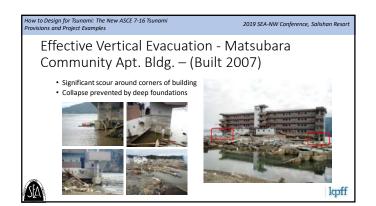

How to Design for Tsunami: The New ASCE 7-16 Tsunami Provisions and Project Examples	2019 SEA-NW Conference, Salishan Resort
Outline	
Tsunami Background	
Tohoku Tsunami Lessons	
ASCE 7-16 Tsunami Loads and Effects	
Scope of Chapter 6	
Probabilistic Tsunami Design Maps	
 ASCE 7-16 Tsunami Geodatabase Site flow parameters 	
Design Load Cases	
Structural Loading	
Project Examples	
SA	kpff

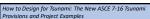






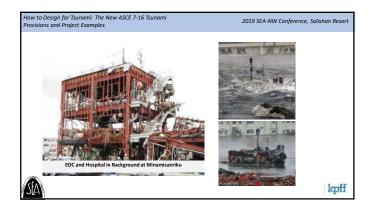

ow to Design for Tsunami: The New ASCE 7-16 Tsunami ovisions and Project Examples	2019 SEA-NW Conference, Salishan Resort
Outline	
Tsunami Background	
Tohoku Tsunami Lessons	
 ASCE 7-16 Tsunami Loads and Effects Scope of Chapter 6 Probabilistic Tsunami Design Maps ASCE 7-16 Tsunami Geodatabase Site flow parameters Design Load Cases Structural Loading 	
 Project Examples 	
SAA	kpff

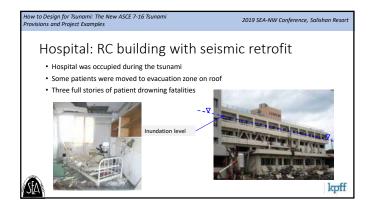


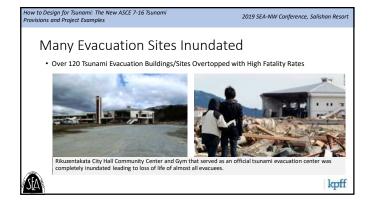


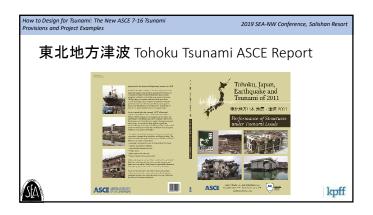
How to Design for Tsunami: The New ASCE 7-16 Tsunami Provisions and Project Examples	2019 SEA-NW Conference, Salishan Resort
Varied Performance of Reinfo Concrete Buildings	prced
	Varied performance of neighboring concrete buildings in Minamisanriku
	6
SA	kpff

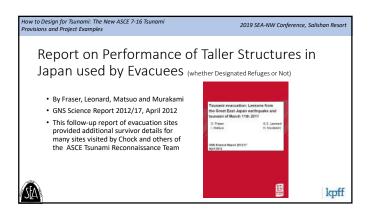
2019 SEA-NW Conference, Salishan Resort

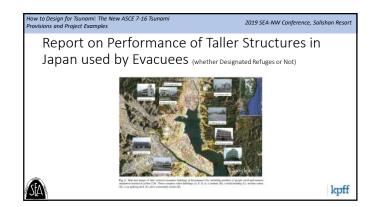



- Over 300 disaster responders killed
- Mayor Jin Sato, and 29 workers remained at center to provide live warnings during inundation
- 24 made it to the roof

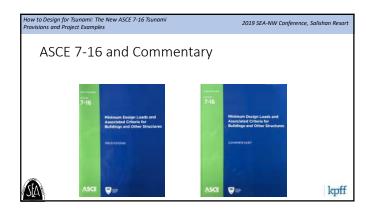

ŀΛ


- But only Sato and 8 others survived
- Tragic loss of lives at adjacent hospital

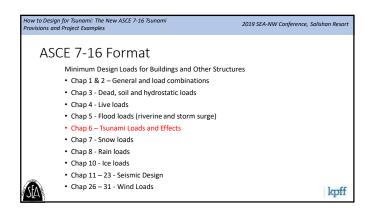


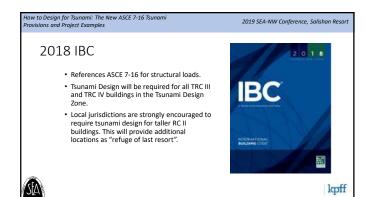


How to Design for Tsunami: The New ASCE 7-16 Tsunami Provisions and Project Examples 2019 SEA-NW Conference, Salishan Resort TSUNAMI Safety provided by Multi-Story Buildings • Tsunami Evacuation: Lessons from the Great East Japan Earthquake and Tsunami of March 11th 2011 (State of Washington sponsored investigation) • An example from the City of Ishinomaki (low-lying area similar to coastal communities at risk in the US) near Sendai • "There was widespread use of buildings for informal (unplanned) vertical evacuation in Ishinomaki on March 11th, 2011. In addition to these three designated buildings, almost any building that is higher than a 2-storey residential structure was used for vertical

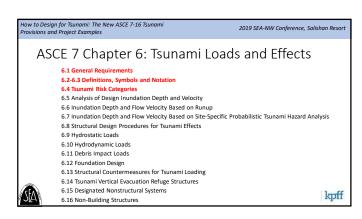

 There was widespread use or buildings for informal (unplantied) vertical evaluation in Ishinomaki on March 11H, 2011. In addition to these three designated buildings, almost any building that is higher than a 2-storey residential structure was used for vertical evacuation in this event. About 260 official and unofficial evacuation places were used in total, providing refuge to around 50,000 people. These included schools, temples, shopping centers and housing."

SŀΔ


kpff


How to Design for Tsunami: The New ASCE 7-16 Tsunami Provisions and Project Examples **TSUNAMI Resilient Engineering Philosophy** • The lesson of recent devastating tsunami is that **historical records alone do <u>not</u> provide a sufficient measure of the potential heights of future tsunamis**. Engineering design <u>must</u> consider the occurrence of events greater than scenarios in the historical record. • A Probabilistic physics-based Tsunami Hazard Analysis methodology was used for ASCE 7-16 • The ASCE 7-16 national tsunami design provisions utilizes a consistent reliability-based standard of structural performance for disaster resilience of essential facilities and critical infrastructure.

How to Design for Tsunami: The New ASCE 7-16 Tsunami Provisions and Project Examples	2019 SEA-NW Conference, Salishan Resort
Outline	
Tsunami Background Tohoku Tsunami Lessons	
 ASCE 7-16 Tsunami Loads and Effects Scope of Chapter 6 Probabilistic Tsunami Design Maps ASCE 7-16 Tsunami Geodatabase Site flow parameters Design Load Cases Structural Loading 	
Project Examples	
<u>A</u>	kpff



	ign for Tsunami: The New ASCE 7-16 Tsunami nd Project Examples	2019 SEA-NW Conference, Salishan Resort	
AS	CE 7 Chapter 6: Tsunami L	oads and Effects	
	6.1 General Requirements		
	6.2-6.3 Definitions, Symbols and Notation		
	6.4 Tsunami Risk Categories		
	6.5 Analysis of Design Inundation Depth and Velocity		
	6.6 Inundation Depth and Flow Velocity Based on Runu	2	
	6.7 Inundation Depth and Flow Velocity Based on Site-S	pecific Probabilistic Tsunami Hazard Analysis	
	6.8 Structural Design Procedures for Tsunami Effects		
	6.9 Hydrostatic Loads		
	6.10 Hydrodynamic Loads		
	6.11 Debris Impact Loads		
	6.12 Foundation Design		
	6.13 Structural Countermeasures for Tsunami Loading		
	6.14 Tsunami Vertical Evacuation Refuge Structures		
A	6.15 Designated Nonstructural Systems		
3AN	6.16 Non-Building Structures	kpff	

How to Design for Tsunami: The New ASCE 7-16 Tsunami Provisions and Proiect Examples

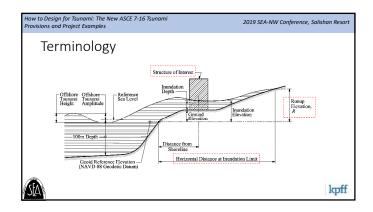
SIΔ

2019 SEA-NW Conference, Salishan Resort

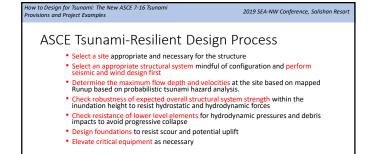
MCT and Tsunami Design Zone

- The ASCE 7 Tsunami Loads and Effects Chapter is applicable only to the states of Alaska, Washington, Oregon, California, and Hawaii, which are tsunami-prone regions that have quantifiable hazards.
- The Maximum Considered Tsunami (MCT) has a 2% probability of being exceeded in a 50-year period, or a ~2500 year average return period.
- The Maximum Considered Tsunami is the design basis event, characterized by the inundation depths and flow velocities at the stages of in-flow and outflow most critical to the structure.
- The <u>Tsunami Design Zone</u> is the area vulnerable to being flooded or inundated by the Maximum Considered Tsunami. The runup for this hazard probability is used to define a Tsunami Design Zone map.

kpff

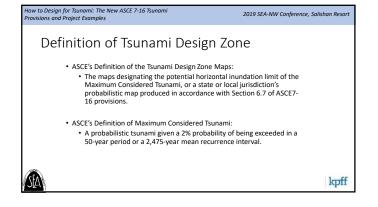

How to Design for Tsunami: The New ASCE 7-16 Tsunami Provisions and Project Examples

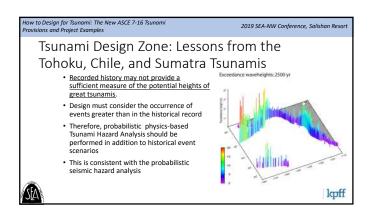
2019 SEA-NW Conference, Salishan Resort

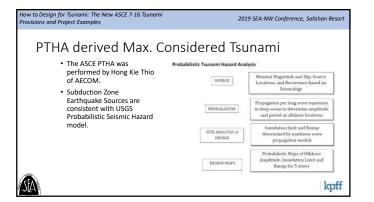

Terminology

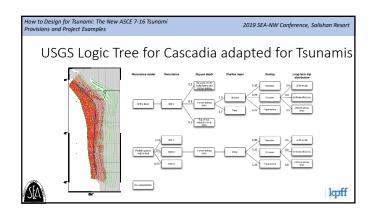
- RUNUP ELEVATION: Difference between the elevation of maximum tsunami inundation limit and the (NAVD-88) reference datum
- INUNDATION DEPTH: The depth of design tsunami water level with respect to the grade plane at the structure
- INUNDATION LIMIT: The horizontal inland distance from the shoreline inundated by the tsunami
- Froude number: F_r ; A dimensionless number defined by u/V(gh), where u is the flow velocity and h is the inundation depth

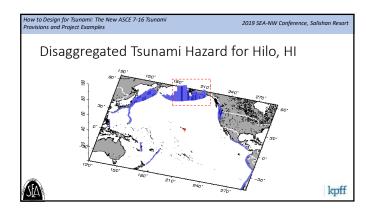
kpff

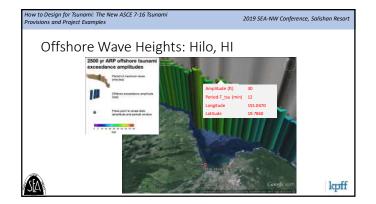

SFA

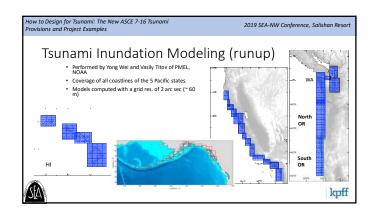

kpff

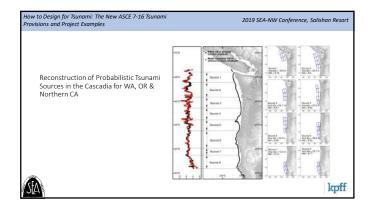

v to Design for Tsunami: The visions and Project Example:		2019 SEA-NW Conference, Salishan Resor
Consequer	nce Guidance on	RC of Buildings Per
ASCE 7		0
Risk Category I	Up to 2 persons affected (e.g., agricultural and minor storag	e facilities, etc.)
Risk Category II (Tsunami Design Optional)	Approximately 3 to 300 persons (e.g., Office buildings, condominium	
Risk Category III (Tsunami Design Required)	Approximately 300 to 5,000+ af (e.g., Public assembly halls, arenas facilities, etc.)	ifected , high occupancy educational facilities, public utility
Risk Category IV (Tsunami Design Required)	Over 5,000 persons affected (e.g., hospitals and emergency she facilities, air traffic control, toxic m	Iters, emergency operations centers, first responder aterial storage, etc.)

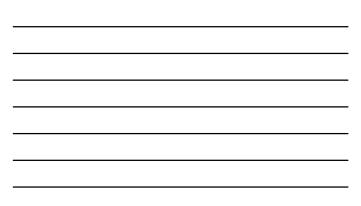

How to Design for Tsunami: The New ASCE 7-16 Tsunami Provisions and Project Examples	2019 SEA-NW Conference, Salishan Resort
Outline	
 Tsunami Background Tohoku Tsunami Lessons 	
ASCE 7-16 Tsunami Loads and Effects Scope of Chapter 6 Probabilistic Tsunami Design Maps ASCE 7-16 Tsunami Geodatabase Site flow parameters Design Load Cases Structural Loading Design Exerctly 1	
Project Examples	kuff

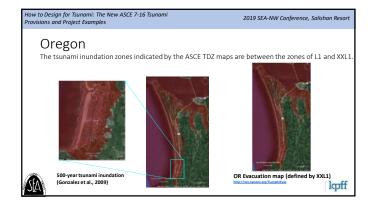


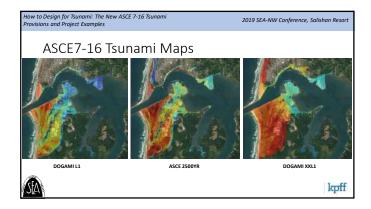


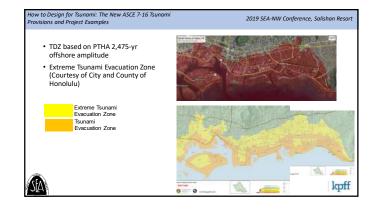


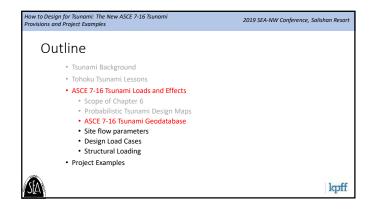


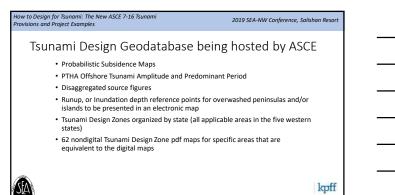


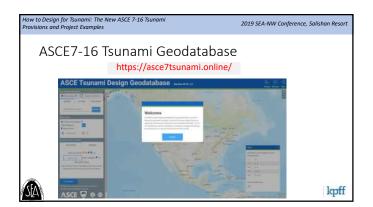


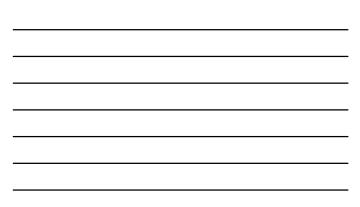




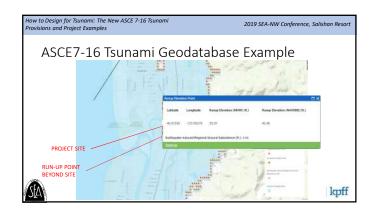


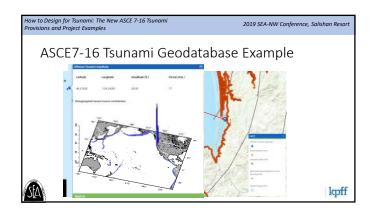


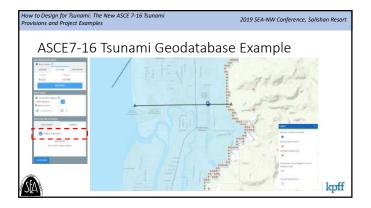


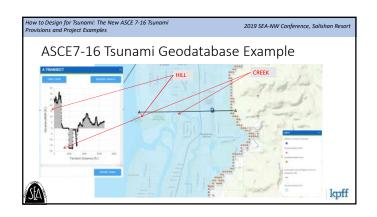


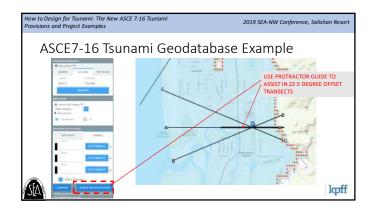


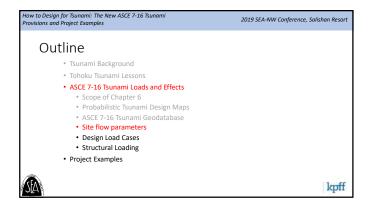


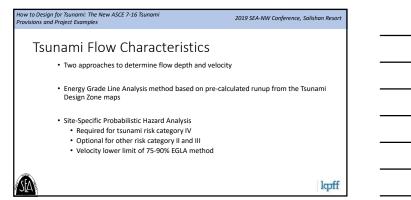


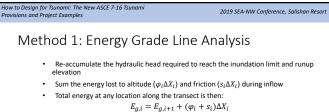




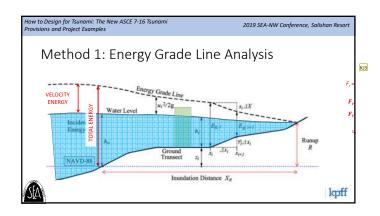


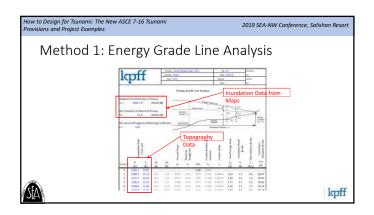


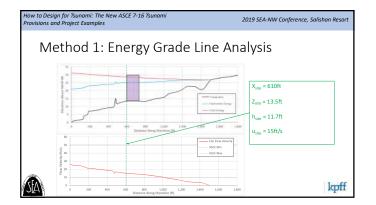




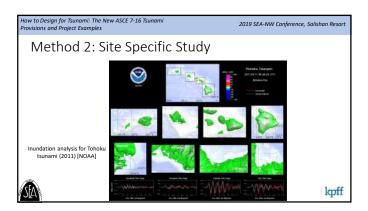
How to Design for Provisions and Proj	Tsunami: The New ASCE 7-16 Tsunami ect Examples	2019 SEA-NW Conference, Salishan Resort
ASCE	7 Chapter 6: Tsunami L	loads and Effects
6.3	L General Requirements	
6.3	2-6.3 Definitions, Symbols and Notation	
6.4	Tsunami Risk Categories	
6.	Analysis of Design Inundation Depth and Velocity	
6.0	5 Inundation Depth and Flow Velocity Based on Run	up
6.3	7 Inundation Depth and Flow Velocity Based on Site	-Specific Probabilistic Tsunami Hazard Analysis
6.8	Structural Design Procedures for Tsunami Effects	
6.9	Hydrostatic Loads	
6.3	10 Hydrodynamic Loads	
6.3	11 Debris Impact Loads	
6.3	12 Foundation Design	
6.3	13 Structural Countermeasures for Tsunami Loading	
6.3	14 Tsunami Vertical Evacuation Refuge Structures	
6.:	15 Designated Nonstructural Systems	1
JA A 6.:	16 Non-Building Structures	kpri

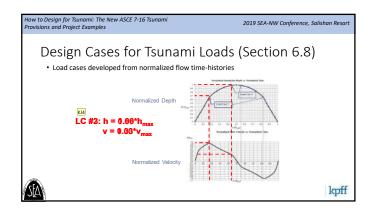


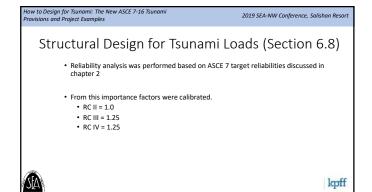

NΔ

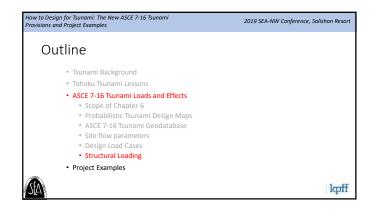

Validated to be conservative through field data & 36,000 numerical simulations yielding 700,000 data points

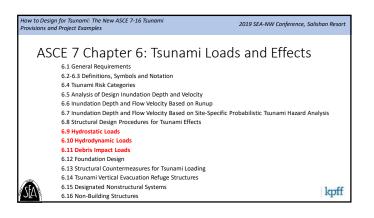

kpff

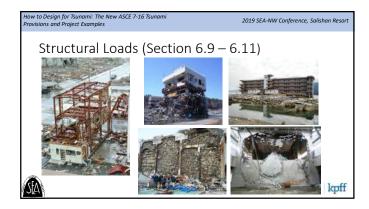


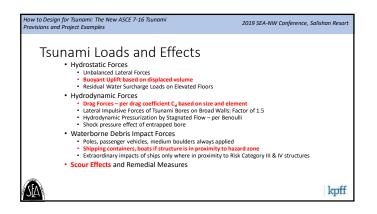

How to Design for Tsunami: The New ASCE 7-16 Tsunami Provisions and Project Examples 2019 SEA-NW Conference, Salishan Resort Method 2: Site Specific Study • Site specific analysis will give time-step by time-step data for all points of interest • Allows use of better topographic data and higher resolution modeling • Allowed to go below mapped modeling with an 80% cap (similar to seismic)

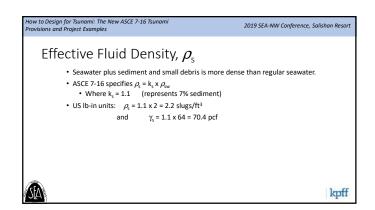


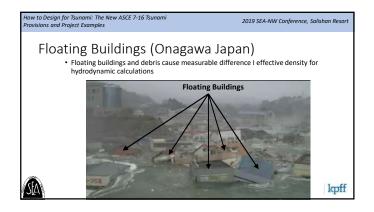

How to Design for Tsunami: The New ASCE 7-16 Tsunami Provisions and Project Examples	2019 SEA-NW Conference, Salishan Resort
Outline	
 Tsunami Background 	
 Tohoku Tsunami Lessons 	
 ASCE 7-16 Tsunami Loads and Effects Scope of Chapter 6 Probabilistic Tsunami Design Maps ASCE 7-16 Tsunami Geodatabase Site flow parameters Design Load Cases Structural Loading Project Examples 	
<u>SIA</u>	kpff


	ign for Tsunami: The New ASCE 7-16 Tsunami nd Project Examples	2019 SEA-NW Conference, Salishan Resort		
AS	SCE 7 Chapter 6: Tsunami	Loads and Effects		
	6.1 General Requirements			
	6.2-6.3 Definitions, Symbols and Notation			
	6.4 Tsunami Risk Categories			
	6.5 Analysis of Design Inundation Depth and Velocity			
	6.6 Inundation Depth and Flow Velocity Based on Rur	lup		
	6.7 Inundation Depth and Flow Velocity Based on Site-Specific Probabilistic Tsunami Hazard Analysis			
	6.8 Structural Design Procedures for Tsunami Effects			
	6.9 Hydrostatic Loads			
	6.10 Hydrodynamic Loads			
	6.11 Debris Impact Loads			
	6.12 Foundation Design			
	6.13 Structural Countermeasures for Tsunami Loading	5		
	6.14 Tsunami Vertical Evacuation Refuge Structures			
	6.15 Designated Nonstructural Systems	1		
0[A N	6.16 Non-Building Structures	kpti		

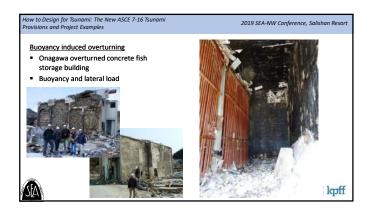


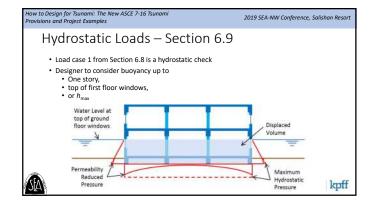


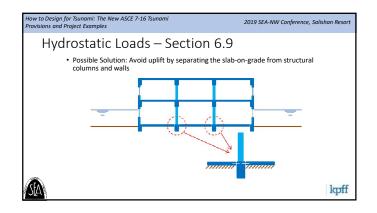


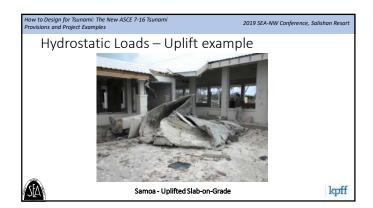


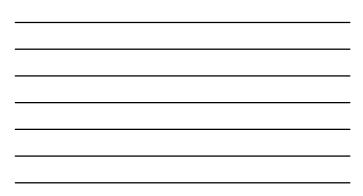
ow to Design for Tsunami: The New ASCE 7-16 Tsunami rovisions and Project Examples	2019 SEA-NW Conference, Salishan Resor
Tsunami Loads and Effects • Hydrostatic Forces	
Unbalanced Lateral Forces Buoyant Uplift based on displaced volume Residual Water Surcharge Loads on Elevated Floors	
 Hydrodynamic Forces Drag Forces – per drag coefficient C_d based on size and ele Lateral impulsive Forces of Tsunami Bores on Broad Walls Hydrodynamic Pressurization by Stagnated Flow – per Bee Shock pressure effect of entrapped bore 	s: Factor of 1.5
 Waterborne Debris Impact Forces Poles, passenger vehicles, medium boulders always applie Shipping containers, boats if structure is in proximity to h Extraordinary impacts of ships only where in proximity to 	nazard zone
Scour Effects and Remedial Measures	kpff

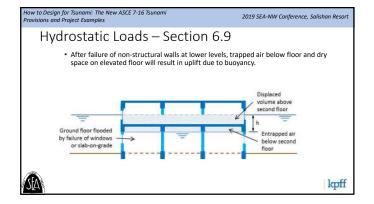



27

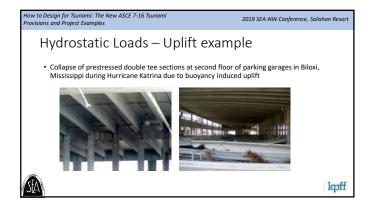


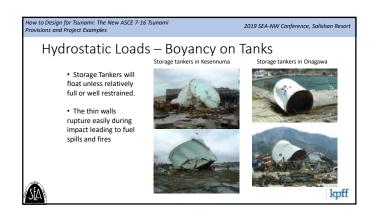


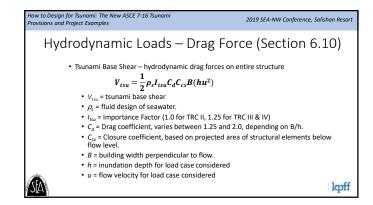


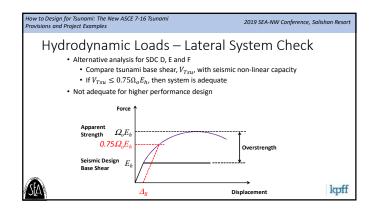


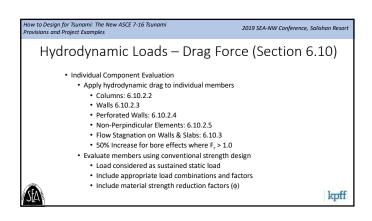


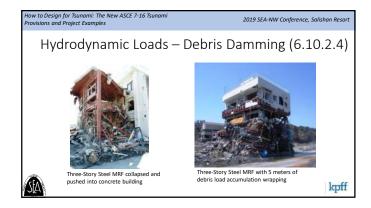


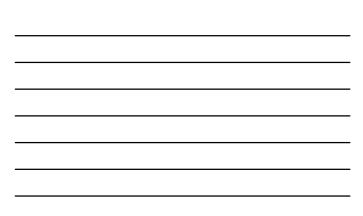


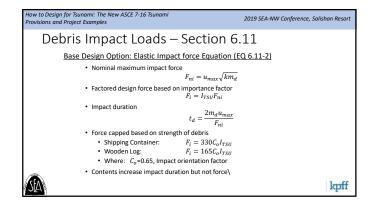


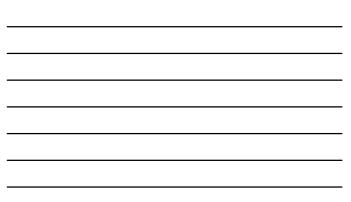


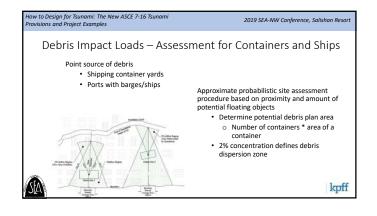




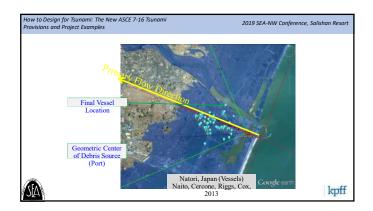




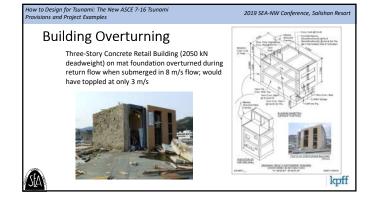


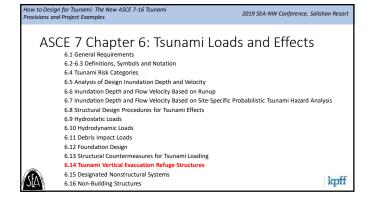


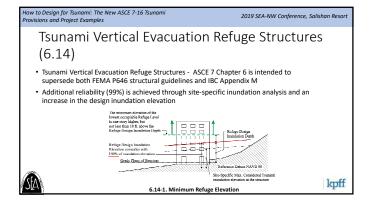
How to Design for Tsunami: The New ASCE 7-16 Tsunami 2019 SEA-NW Conference, Salishan Resort Provisions and Project Examples Debris Impact Loads – Section 6.11 • Waterborne Debris Loads • Utility poles/logs • Passenger vehicles • Tumbling boulders and concrete masses • Shipping containers only where near ports and harbors • Large vessels considered for Critical Facilities and Risk Category IV only where near such ports and harbors

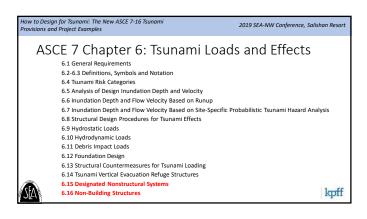


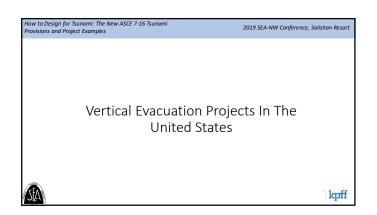


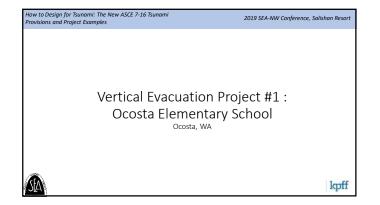


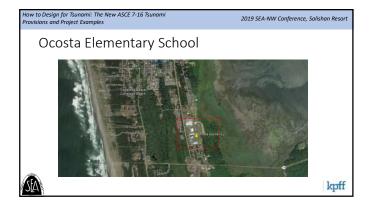

How to Design for Tsunami: 1 Provisions and Project Examp		2019 SEA-NW Conference, Salishan Resort		
	•	i Loads and Effects		
	Requirements			
	nitions, Symbols and Notation			
	Risk Categories			
,	of Design Inundation Depth and Veloc			
6.6 Inundati	on Depth and Flow Velocity Based on	Runup		
6.7 Inundati	6.7 Inundation Depth and Flow Velocity Based on Site-Specific Probabilistic Tsunami Hazard Analysis			
6.8 Structur	al Design Procedures for Tsunami Effec	ts		
6.9 Hydrosta	atic Loads			
6.10 Hydroc	lynamic Loads			
6.11 Debris	Impact Loads			
6.12 Founda	ition Design			
6.13 Structu	ral Countermeasures for Tsunami Loa	Iding		
6.14 Tsunan	ni Vertical Evacuation Refuge Structure	s		
6.15 Designa	ated Nonstructural Systems	1 55		
6.16 Non-Bu	uilding Structures	kptt		

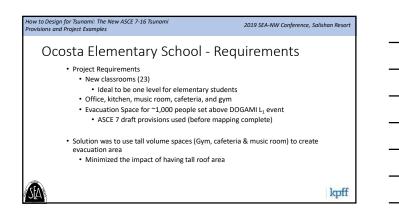


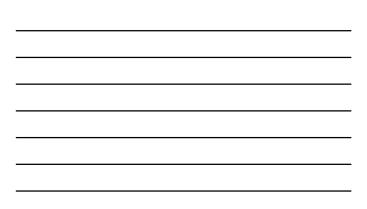


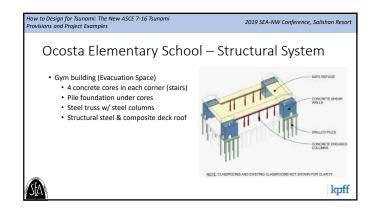


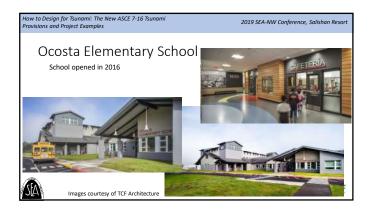


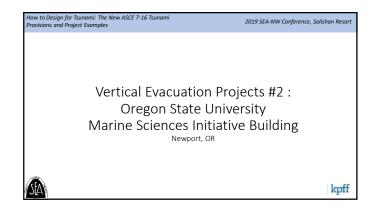

_

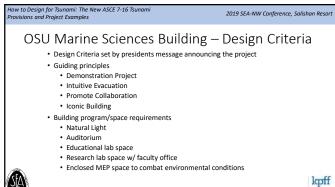


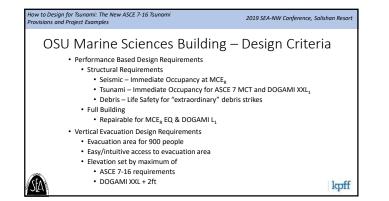




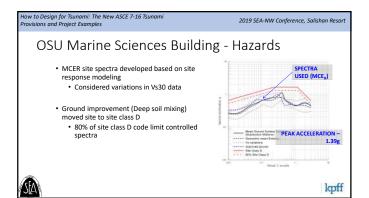

How to Design for Tsunami: The New ASCE 7-16 Provisions and Project Examples	Tsunami	2019 SEA-NW Conference, Salishan Resort
Ocosta School –P	roject Team	
Owner: Architect: Structural Engineer: Tsunami Modeler: Contractor:	Ocosta School Di TCF Architecture Degenkolb Engin Frank Gonzalez (I Integrity Structur	eers University of Washington)
SEA		kpff

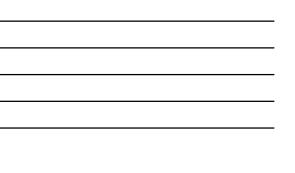


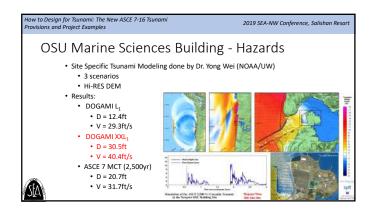


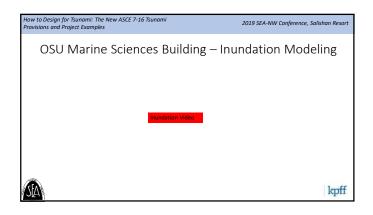


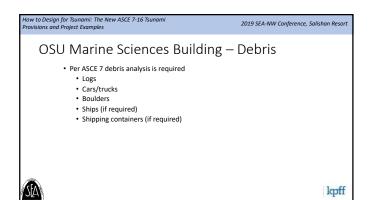
How to Design for Tsunami: The New ASCE 7-16 Tsunan Provisions and Project Examples	ni 2019 SEA-NW Conference, Salishan Resort
OSU Marine Science	es Building –Project Team
Owner:	Oregon State University
Architect:	Yost Grube Hall Architects
Structural Engineer:	KPFF Consulting Engineers
Geotechnical Engineer:	GRI
Tsunami Modeler:	Yong Wei (NOAA/University of Washington)
Contractor:	Anderson Construction
WUNIVERSITY of Oregon State	
SA	kpff

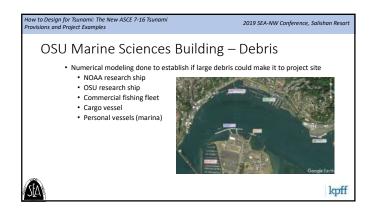

How to Design for Tsunami: The New ASCE 7-16 Tsunami Provisions and Project Examples	2019 SEA-NW Conference, Salishan Resort
OSU Marine Sciences Building	
	kpff

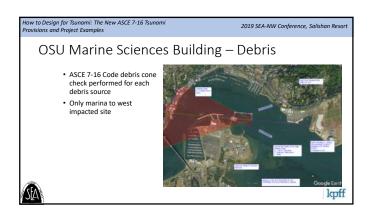


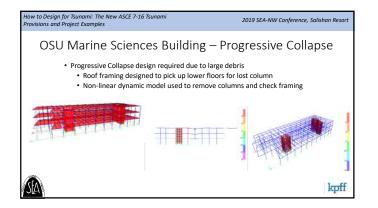

kpff

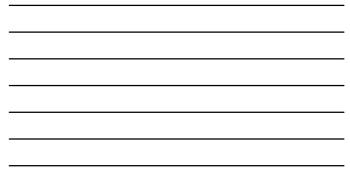


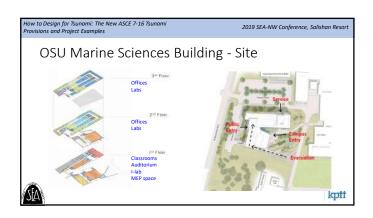




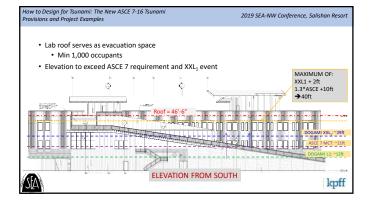


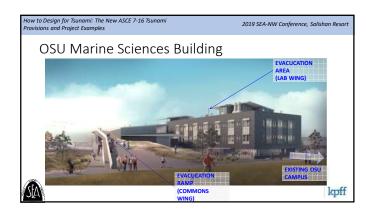


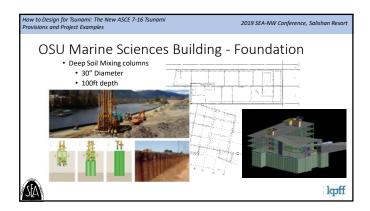


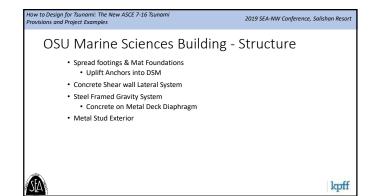


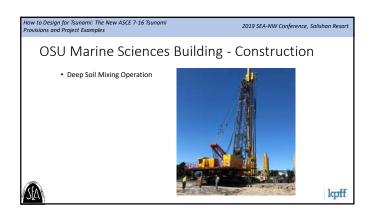


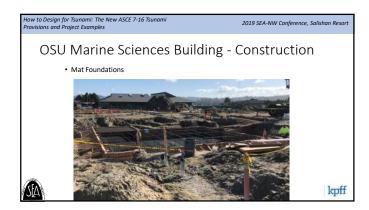

kpff

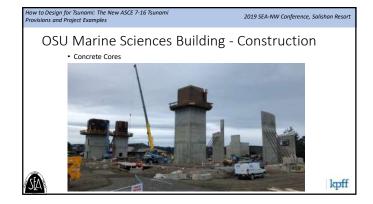


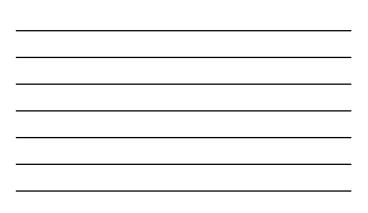


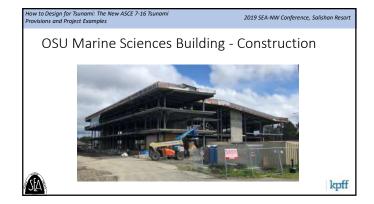


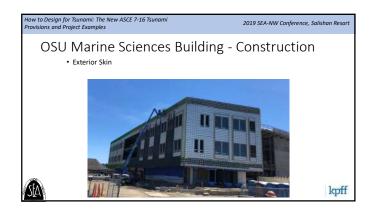











_

