### An Overview of Seismic Provisions in ASCE 7-16

John D. Hooper, P.E., S.E. Director of Earthquake Engineering Magnusson Klemencic Associates

1

## Chapter 11

2

### **New Site Amplification Factors**

- First update since 1994 UBC • Much more data!
- +  $F_a$  and  $F_v$  range between 80%-120% of previous values
- Site Class D is no longer default for Fa
- $F_a \ge 1.2$  (Site Class C "controls" in high shaking areas)

| Ma            | Table 11.4-1 Site Coefficient, Fa           Mapped Risk-Targeted Maximum Considered Earthquake (MCE Spectral Response Acceleration Parameter at Short |        |                      |        |                      |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------|--------|----------------------|
| SITE<br>CLASS | Ss≤0.25                                                                                                                                               | Ss=0.5 | S <sub>S</sub> =0.75 | Ss=1.0 | S <sub>S</sub> ≥1.25 |
| A             | 0.8                                                                                                                                                   | 0.8    | 0.8                  | 0.8    | 0.8                  |
| в             | 1.0                                                                                                                                                   | 1.0    | 1.0                  | 10     | 1.0                  |
| С             | 1.2                                                                                                                                                   | 1.2    | 1.1                  | 1.0    | 1.0                  |
| D             | 1.6                                                                                                                                                   | 1.4    | 1.2                  | 1.1    | 1.0                  |
| E             | 2.5                                                                                                                                                   | 1.7    | 1.2                  | 0.9    | 0.9                  |
| F             |                                                                                                                                                       | See    | Section 11           | 4.7    |                      |



| Ma            | Tat<br>pped Risk-1<br>Spectra | <b>le 11.4-</b><br><sup>7</sup> argeted Ma<br>I Response | I Site Co<br>ximum Cons<br>Acceleration | efficient<br>sidered Eart<br>n Parameter | <b>t, Fa</b><br>thquake (MC<br>r at Short | E <sub>R</sub> ) |
|---------------|-------------------------------|----------------------------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|------------------|
| SITE<br>CLASS | S <sub>S</sub> ≤0.25          | Ss=0.5                                                   | S <sub>S</sub> =0.75                    | S <sub>S</sub> =1.0                      | S <sub>S</sub> =1.25                      | Ss≥1.5           |
| A             | 0.8                           | 0.8                                                      | 0.8                                     | 0.8                                      | 0.8                                       | 0.8              |
| В             | 0.9                           | 0.9                                                      | 0.9                                     | 0.9                                      | 0.9                                       | 0.9              |
| С             | 1.3                           | 1.3                                                      | 1.2                                     | 1.2                                      | 1.2                                       | 1.2              |
| D             | 1.6                           | 1.4                                                      | 1.2                                     | 1.1                                      | 1.0                                       | 1.0              |
| E             | 2.4                           | 1.7                                                      | 1.3                                     | See                                      | e Section 11                              | .4.8             |
| F             |                               |                                                          | See Secti                               | ion 11.4.8                               |                                           |                  |

| Ma            | Tab<br>apped Risk-T<br>Spectra | <b>ble 11.4-</b><br>Targeted Ma<br>I Response | I Site Co<br>ximum Con<br>Acceleratio | efficien<br>sidered Ear<br>n Paramete | <b>t, Fa</b><br>thquake (MC<br>r at Short | E <sub>R</sub> ) |  |
|---------------|--------------------------------|-----------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------|------------------|--|
| SITE<br>CLASS | Ss≤0.25                        | Ss=0.5                                        | Ss=0.75                               | S <sub>S</sub> =1.0                   | Ss=1.25                                   | Ss≥1.5           |  |
| A             | 0.8                            | 0.8                                           | 0.8                                   | 0.8                                   | 0.8                                       | 0.8              |  |
| в             | 0.9                            | 0.9                                           | 0.9                                   | 0.9                                   | 0.9                                       | 0.9              |  |
| с             | 1.3                            | 1.3                                           | 1.2                                   | 1.2                                   | 1.2                                       | 1.2              |  |
| D             | 1.6                            | 1.4                                           | 1.2                                   | 1.1                                   | 1.0                                       | 1.0              |  |
| E             | 2.4                            | 1.7                                           | 1.3                                   | Se                                    | e Section 11                              | .4.8             |  |
| F             |                                | See Section 11.4.8                            |                                       |                                       |                                           |                  |  |

| Ma            | Table 1'<br>pped Risk-1<br>Spectral R | 1.4-2 Lor<br>Targeted Mai<br>Response Ac | <b>1g-Perio</b><br>ximum Cons<br>celeration F | d Coeffi<br>sidered Eart<br>Parameter at | cient, Fv<br>hquake (MC<br>t 1-s Period | E <sub>R</sub> ) |
|---------------|---------------------------------------|------------------------------------------|-----------------------------------------------|------------------------------------------|-----------------------------------------|------------------|
| SITE<br>CLASS | S1≤0.1                                | S1=0.2                                   | S1=0.3                                        | S1=0.4                                   | S1≥0.5                                  |                  |
| ٨             | 0.9                                   | 0.9                                      | 0.9                                           | 0.9                                      | 0.9                                     |                  |

| A | 0.8 | 0.8 | 0.8        | 0.8 | 0.8 |
|---|-----|-----|------------|-----|-----|
| B | 1.0 | 1.0 | 1.0        | 10  | 1.0 |
| с | 1.7 | 1.6 | 1.5        | 1.4 | 1.3 |
| D | 2.4 | 2.0 | 1.8        | 1.6 | 1.5 |
| E | 3.5 | 3.2 | 2.8        | 2.4 | 2.4 |
| F |     | See | Section 11 | 4.7 |     |

| <br> |
|------|
|      |
|      |
| <br> |
|      |
|      |

| Ma            | Table 11.4-2 Long-Period Coefficient, Fv           Mapped Risk-Targeted Maximum Considered Earthquake (MCE <sub>R</sub> )           Spectral Response Acceleration Parameter at 1-s Period |                  |                  |                  |                  |                  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|
| SITE<br>CLASS | S1≤0.1                                                                                                                                                                                     | S1=0.2           | S1=0.3           | S1=0.4           | S1=0.5           | Ss≥0.6           |
| A             | 0.8                                                                                                                                                                                        | 0.8              | 0.8              | 0.8              | 0.8              | 0.8              |
| В             | 0.8                                                                                                                                                                                        | 0.8              | 0.8              | 0.8              | 0.8              | 0.8              |
| С             | 1.5                                                                                                                                                                                        | 1.5              | 1.5              | 1.5              | 1.5              | 1.4              |
| D             | 2.4                                                                                                                                                                                        | 2.2 <sup>a</sup> | 2.0 <sup>a</sup> | 1.9 <sup>a</sup> | 1.8 <sup>a</sup> | 1.7 <sup>a</sup> |
| E             | 4.2                                                                                                                                                                                        |                  | See              | e Section 11     | .4.8             |                  |
| F             |                                                                                                                                                                                            |                  | See Secti        | ion 11.4.8       |                  |                  |
|               | a Also, see ree                                                                                                                                                                            | quirements for   | site specific gr | ound motions i   | n Section 11.4.8 | 3                |





### Background for Section 11.4.8 Requirement

- Use of only two response periods (0.25 and 1.05) generally not sufficient to accurately represent response spectral acceleration for all design periods
  - Reasonably Accurate (or Conservative) for Stiff Soil Sites, Site Classes A-C
  - Generally Non-conservative for Soft Soil Sites, Site Classes D-F whose seismic hazard is
     dominated by large magnitude events















### **Exceptions to requiring Site-Specific Spectra**

- Structures on Site Class E sites with  $S_s \ge 1.0$ , provided  $F_a$  taken as from Site Class C
- Structures on Site Class D & E sites with  $S_1 \ge 0.2$ , provided  $C_s$  is
  - determined by Eq. 12.8-2 for  $T \leq 1.5 T_{\rm s}$  and
  - taken as 1.5 times value computed by Eq. 12.8-3 for  $T_L \gtrsim T > 1.5 T_s$  or Eq. 12.8-4 for  $T > T_L$

• Structures on Site Class E Sites with S,  $\geq\,$  0.2, provided  $\,T\leq T_{s}\,$  and ELF is used for the analysis

17

### **New Vertical Ground Motions**

- Section 11.9 provides OPTIONAL vertical ground motions in lieu of Section 12.4.2.2 ( $E_\nu)$  for SDC C through F
- Keyed to S<sub>MS</sub> (MCE<sub>R</sub>-level ground motions)
- Design spectrum taken as 2/3 MCE<sub>R</sub> spectrum





### **Seismic Load Combinations**

- Expanded seismic load combinations in Sections 12.4.2.3 and 12.4.3.2 moved to Chapter 2
- Seismic load effects definitions remain in Section 12.4 (E, E<sub>h</sub>, E<sub>v</sub>, E<sub>m</sub>, E<sub>mh</sub>, and  $\Omega_o$ )

### **Seismic Load Combinations**

- Introduces a new term, E<sub>d</sub>:
   The capacity-limited horizontal seismic load effect, equal to the maximum force that can develop in the element as determined by rational, plastic mechanism Analysis
  - $E_{mh} = \Omega_o Q_E$  need not be taken as larger than  $E_{cl}$
  - $E_{cl}$  also used in AISC 341-16

22

### Updated Requirements for Determination of C<sub>s</sub> and E<sub>v</sub> for short, regular structures

- Section 12.8.1.3 allows S<sub>DS</sub> = 1.0 but not less than 70% of S<sub>DS</sub> defined in Section 11.4.4
   No irregularities

  - Does not exceed five stories
  - T < 0.5sec
  - Meets the requirements for  $\rho$  = 1.0
  - Risk Category I and II

23

### **Accidental Torsion Change**

- Section 12.8.4.2. requires accidental torsional moments ( $M_{ta}$ ) be applied for determination of horizontal irregularities
- *M<sub>ta</sub>* need NOT be included when determining the seismic forces E for:
  - Design of the structure
  - Determination of design story drift
- Except for two important cases...

### **Accidental Torsion Change**

### • These two cases are:

- 1. Structures assigned to Seismic Design Category B with Type 1b horizontal irregularity
- 2. Structures assigned to Seismic Design Category C, D, E, and F with Type 1a and Type 1b horizontal structural irregularity

25

### **New Diaphragm Requirements**

- Section 12.10.3 required for precast concrete diaphragms; alternative for others
- Complete new formulation
  - Includes potential reduction for diaphragm ductility
- Based on analytical and experimental research





### **Strength Design Alternative for Foundations**

- New Section 12.13.5 Strength Design for Nominal Foundation Geotechnical Capacity
- Used when Strength Load Combinations are applied in design
- $\bullet$  Foundation Capacity,  $\mathbf{Q}_{us}$  , determined by geotechnical engineer
- Resistance Factors ( $\varphi)$  provided

28

### Strength Design Alternative for Foundations

Table 12.13–1 Resistance Factors for Strength Design of Soil-Foundation Interface

| Direction and Type of Resistance           | Resistance<br>Factors, $\phi$ |
|--------------------------------------------|-------------------------------|
| Vertical Resistance                        |                               |
| Compression (Bearing) Strength             | 0.45                          |
| Pile Friction (either upward or downwards) | 0.45                          |
| Horizontal Resistance                      |                               |
| Lateral Bearing Pressure                   | 0.5                           |
| Sliding (by either Friction or Cohesion)   | 0.85                          |

29

### New Structural Requirements for Sites Susceptible to Liquefaction

- Current Section 11.8.2 requires geotechnical investigation, including liquefaction and lateral spreading
- New Section 12.13.9 provides design requirements
  - 12.13.9.2 Shallow Foundation Design
  - 12.13.9.3 Deep Foundation Design

### Section 12.13.9.2 Shallow Foundations

• Buildings permitted to be supported on shallow foundations provided:

### Table 12.13-1 Upper Limit on Lateral Spreading Horizontal Ground Displace for Shallow Foundations Beyond which Deep Foundations are Required Risk Category I or II 111 12 in. 18 in. 4 in. Table 12.13-2 Differential Settlement Threshold, Risk Category Structure Type nuctures with concrete or masonry I or II IV 0.0075 0.005 0.002 0.015 0.010 0.002 tory structures. ructures with concrete or masonry

0.005 0.003

31

### Section 12.13.9.2 Shallow Foundations

 Shallow foundations meeting differential settlement criteria need only need to follow deem-to-comply detailing:

• Individual footing ties:  $F_{tie} = 0.5 \mu P u$ 

Other sing Multi-stor

- Footings integral with minimum 5" slab-on-ground with  $\rho$  > 0.0025
- Mat foundations need to be designed to accommodate expected vertical differential settlements

32

### Section 12.13.9.3 Deep Foundations

- Design requirements account for:
  - Downdrag demands
  - Reduced lateral resistance
  - Concrete pile detailing (ACI reference)
  - Lateral spreading affect on piles deformations and demands
  - Foundation ties

### Modifications to Modal Response Spectrum Analysis Method

- Modified to require 100% of the mass
  - Introduces rigid body mode concept for T<0.05s</li>
  - Exception allows 90% of mass as currently done

• 15% scaling reduction relative to ELF results is eliminated; must scale to 100% of ELF results

34

### Linear Response History Analysis

- Added to Section 12.9
- Advantage of LRHA vs. MRSA
  - The algebraic signs of all forces and deformations are retained in LRHA; The signs are lost in the modal combinations used in MRSA
  - Concurrency of actions (axial force and bending moment) are retained in LRHA. Recovery of concurrent actions is not possible in MRSA.



| Торіс                  | ASCE/SEI 7-10                                                      | ASCE/SEI 7-16                                                                         |
|------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Egress                 | Egress stairs designated as $l_p = 1.5$                            | Explicit provisions for egress stair<br>design (based on NZ earthquake)               |
| Anchor<br>design       | Omega sub zero values added for<br>anchors in concrete             | Omega sub zero also applies to<br>anchors in masonry and max.<br>omega reduced to 2.0 |
| Ballasted<br>equipment | Friction due to gravity load disallowed for resisting $F_p$ .      | Provisions added for ballasted PV solar                                               |
| Drop<br>ceilings       | Acoustic drop ceiling provisions<br>harmonized with ASTM standards | Additional requirements for<br>perimeter attachment of drop<br>ceilings               |

### Exterior Wall Elements (13.5.3)

 Revision of requirements for connector rods for exterior panels
 Rods must be low carbon or stainless steel and <u>as fabricated</u> meet requirements of F1554 Gr. 36 or satisfy Gr. 55 Supplement 1 annealing reqts.

• L/d  $\leq$  4 for connections using slots or oversize holes

• For connections that accommodate story drift by rod bending:

$$\frac{\left(L/d\right)}{D_{_{pl}}} \ge 6 \quad \left[1\,/\,in.\right]$$



### Lay-in Panel Ceilings (13.5.6.2.2)

- New requirements for seismic clips and the perimeter closure angle
  - Qualified supporting clips can still be used with  $\ensuremath{\sc {\rm _{4-in.}}}$  closure angles
  - Closure angles must be screwed or otherwise positively attached to supporting framing (no screws into drywall...)
  - Each clip must be attached with minimum two screws

40

### Egress Stairs and Ramps (13.5.10)

- Require that sliding connections with fail-safe attributes accommodate D<sub>p1</sub> but not less than 1/2 in
- Sliding connections without fail-safe must accommodate 1.5  $D_{\rm pl}$  but not less than 1 in.
- Metal supports must accommodate 1.5 D<sub>pl</sub>
- + All fasteners and attachments designed for  $R_{\rm p}$  =  $a_{\rm p}$  =  $\Omega_{\rm o}$  = 2.5
- In the absence of sliding or ductile connections, include stair in structural model

41

### Sprinklers (Table 13.6.8.2)

NFPA 13-16 deemed to comply
 Additional clearance requirement (3 inches) for drops and sprigs





- ASCE 7-16 adopted the vertical ground motions based on the work of Bozorgnia and Campbell (2004)
- These ground motions (currently) required for certain nonbuilding structures:
- liquid and granular storage tanks/vessels
  suspended structures (such as boilers)
- nonbuilding structures incorporating horizontal cantilevers



### Accidental Torsion (15.4.1)

- The accidental torsion requirements of section 12.8.4.2 need not be accounted for in nonbuilding structures if certain criteria is met – low R-value, regular, and inherent torsion accounted for
- Primary factors that contribute to the effects of accidental torsion are frequently not present in many nonbuilding structures

### Foundations of Liquefiable Soils (12.13.7 & 15.4.10)

- New Section 12.13.7 is a "get out of jail free card" for shallow foundations on liquefiable soils (under certain conditions).
- 15.4.10 takes back the "get out of jail free card" unless it can be demonstrated that the structure and its foundation can accommodate the liquefaction.

46

### Foundations of Liquefiable Soils (12.13.7 & 15.4.10)

D OR SOLD

JUT

THIS CAR

FREE

BE KEPT UNT.

 New Section foundations Communi • 15.4.10 takes GE

accommoda

demonstrate OF JA

for shallow nditions). nless it can be on can

47

### **Major Additions**

### • Wind Turbine Structures (15.6.7)

- Specific values for R,  $C_d$ , and  $\Omega_o$  added to Table 15.4-2

- MH 16.3 Steel Cantilevered Storage Racks (15.5.3.2)
  - New system added with specific values for R,  $C_{d\prime}$  and  $\Omega_{o}$  added to Table 15.4-1
  - ASCE 7 now contains provisions for two types of steel storage racks often found in warehouse stores

# Chapter 16





# Important New Concepts Important New Conce

52

### 16.1.1 Scope

- Applicability any structure
- Scope Demonstrate acceptable strength, stiffness and ductility to resist  ${\sf MCE}_{\sf R}$  demands with acceptable performance
  - Linear analysis per Chapter 12
  - Nonlinear analysis
  - Independent structural (peer) review

53

Chapter 22

### New Seismic Design Maps:

Based on USGS's 2014 National Seismic Hazard Maps

- New/updated fault characterizations
- New Ground Motion Prediction Equations (Ground Motion Models)

55



56

### Summary of Most Impactful Changes:

- Changes to Site Amplification Factors/Introduction of Site-specific ground motion requirements
- Amplification of diaphragm transfer forces by  $\Omega_{o}$
- MRSA results scaled to 100% of ELF results
- New Structural Requirements for Sites Susceptible to Liquefaction • But not for non-building structures
- Explicit provisions for egress stairs
- Update to Chapter 16 Nonlinear Response History Analysis
- Updated seismic design values for all locations

# **Questions?**