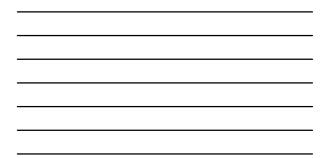

Chapter 1	General Requirements	
Chapter 2	Seismic Performance Objectives and Ground Motions	
Chapter 3	Evaluation and Retrofit Requirements	
Chapter 4	Tier 1 Screening	
Chapter 5	Tier 2 Deficiency-Based Evaluation and Retrofit	
Chapter 6	Tier 3 Systematic Evaluation and Retrofit	
Chapter 7	Analysis Procedures and Acceptance Criteria	
Chapter 8	Foundations and Geologic Site Hazards	
Chapter 9	Steel	
Chapter 10	Concrete	
Chapter 11	Masonry	
Chapter 12	Wood and Cold-Formed Steel	
Chapter 13	Architectural, Mechanical, and Electrical Components	
Chapter 14	Seismic Isolation	
Chapter 18	Supplemental Energy Dissipation	
Chapter 16	System-Specific Performance Procedures	
Chapter 17	Tier 1 Checklists	
Chapter 18	References	
Appendix A	Guidelines for Deficiency-Based Procedures	
Appendix E	Use of ASCE 41-13 within Mitigation Programs	



Basic Performance		BP	POE	
Basic Performance	Risk Category	BSE-1E	BSE-2E	
Objective	1&1	Life Safety	Collapse	
for Existing Buildings	(Typical buildings)	Structural	Prevention	
		Performance	Structural	
(BPOE)		Life Safety	Performance	
		Nonstructural	Nonstructural	
		Performance	Performance Not	
			Considered	
		Damage Control	Limited Safety	
	(Schools,	Structural	Structural	
	Assembly)	Performance	Performance	
		Position Retention	Nonstructural	
		Nonstructural	Performance Not	
		Performance	Considered	
	IV	Immediate	Life Safety	
	(Essential facilities,	Occupancy	Structural	
	i.e. hospitals &	Structural	Performance	
	EOCs)	Performance	Nonstructural	
		Position Retention	Performance Not	
		Nonstructural	Considered	
		Performance		

	BPOE		
ASCE 41-13 Basic Performance Objective for Existing Buildings	Risk Category I & II (Typical buildings)	BSE-1E Life Safety Structural Performance	BSE-2E Deemed to Comply per Commentary
(BPOE)		Life Safety Nonstructural Performance	
Tier 1 & 2	III (Schools, Assembly)	Damage Control Structural Performance	Deemed to Comply per Commentary
		Position Retention Nonstructural Performance	
	IV (Essential facilities, i.e. hospitals & EOCs)	Immediate Occupancy Structural Performance	Deemed to Comply per Commentary
		Position Retention Nonstructural Performance	

BPOE ≈ ASCE 31-03 Life Safety & Immediate Occupancy

BPOE represent a lesser performance objective that has historically been accepted for existing buildings.

- <u>"E" hazards</u> used instead of "N" hazards, as opposed to ¾ "code" or higher "m"
- Same structural performance levels
- Nonstructural is Life Safety instead of Position Retention for RC I & II
- Nonstructural is Position Retention instead of Operational for RC IV
- ASCE 41-13 Tier 1 & Tier 2, only need to check performance in the BSE-1E

San Francisco Example

<u>New Design Equivalent Hazards – No "Break"</u> BSE-2N is 1.50

BSE-1N is 1.00

Existing Building Hazards - the "Break"

BSE-2E is 1.48 (99% of $\mathrm{MCE}_\mathrm{R})$

BSE-1E is 0.99 (99% of DE)

BSE-2E/BSE-1E = 1.5

41-13 to 31-03 - 33% increase in demand due to BSE-1E and BSE-1N the same.

Los Angeles Example

 New Design Equivalent Hazards – No "Break"

 BSE-2N is 2.40

 BSE-1N is 1.60

 <u>Existing Building Hazards – the "Break"</u>

 BSE-2E is 1.76 (73% of MCE_R)

 BSE-1E is 0.84 (53% of DE)

 BSE-2E/BSE-1E = 2.0

41-13 to 31-03 - ASCE 31 2/3MCE = 1.44 is 77% of ASCE 31 demand.

Salt Lake City Example

 New Design Equivalent Hazards – No "Break"

 BSE-2N is 1.54

 BSE-1N is 1.03

 Existing Building Hazards – the "Break"

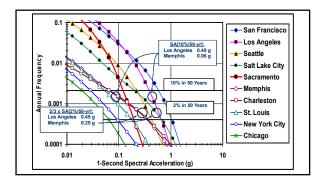
 BSE-2E is 1.07 (69% of MCE_R)

 BSE-1E is 0.29 (28% of DE)

 BSE-2F/BSE-1E = 3.7

41-13 to 31-03: 2/3MCE = 1.15, 41-13 is 34% of ASCE 31 demand.

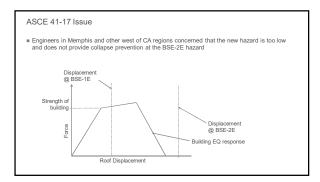
Memphis Example


New Design Equivalent Hazards – No "Break" BSE-2N is 1.01 BSE-1N is 0.67

Existing Building Hazards - the "Break"

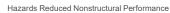
BSE-2E is 0.71 (67% of $\mathrm{MCE}_\mathrm{R})$

BSE-1E is 0.13 (19% of DE) BSE-2E/BSE-1E = 5.5

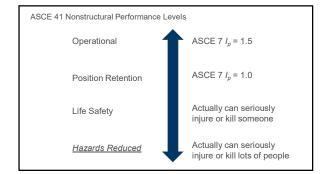

41-13 to 31-03: 2/3MCE = 0.93, 41-13 is 19% of ASCE 31 demand

Reasons for ASCE 41-13 decision

- "The hazard is the hazard,"
 If it is low => lack of probability of a major earthquake
- Better to address the most egregious buildings (i.e. ones that fail at a very low hazard level) than set to high a bar



ASCE 41-17		BP	OE
Tier 1 & Tier 2	Risk Category	BSE-1E	BSE-2E
	1&11	Deemed to Comply	Collapse
Basic Performance	(Typical buildings)		Prevention
Objective		Life Safety	Structural Performance
for Existing Buildings		Nonstructural	
		Performance	Nonstructural Performance Not
(BPOE)			Considered
		Deemed to Comply	Limited Safety
RC I – III: Tier 1 & 2 at BSE-2E	(Schools,		Structural
	Assembly)	Position Retention	Performance
RC IV: Explicitly check both		Nonstructural	Nonstructural
hazards.		Performance	Performance Not
			Considered
	IV	Immediate	Life Safety
	(Essential facilities, i.e. hospitals &	Occupancy Structural	Structural Performance
	EOCs)	Performance	
		Position Retention	Nonstructural Performance Not
		Nonstructural	Considered
		Performance	Considered



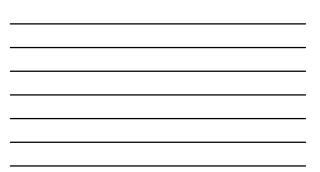
Create a performance level that addresses falling hazard that could serious injure or kill many people.

Different than Life Safety which is based on injuring or killing a person.

Hazards Reduced Nonstructural Performance

- In ASCE 41-13:
- Nonstructural components <u>not considered at BSE-2E</u> level and <u>only evaluated at BSE-1E</u>

 Where <u>BSE-1E may be much less than BSE-2E</u>, some nonstructural components may not be adequately evaluated for life safety
- Hazards Reduced represents a subset of nonstructural components to be evaluated at BSE-2E level
- Some nonstructural hazards can have as great of an effect on life safety as local collapse of the structure
 If BSE-2E exceeds BSE-1N, force level is capped at BSE-1N
- Table 13-1 updated to include Hazards Reduced
- Nonstructural Checklists updated


Hazards Reduced Examples

- Cladding and parapets over busy sidewalks
- Heavy plaster ceilings over assembly spaces
- URM or hollow clay tile partitions in assembly spaces
- Hazardous materials
- Marquees and architectural appendages over egress and sidewalks

Storage racks

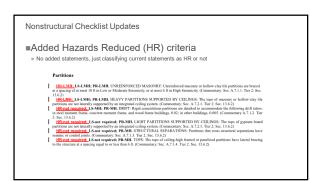
"If it can be demonstrated that the component does not pose a threat of serious injury to many people due to falling or failing under the seismic hazard level being considered, the component need not be considered in the Hazards Reduced nonstructural performance level."

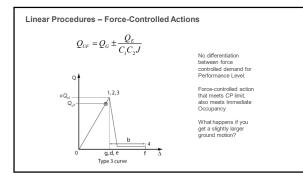
ASCE 41-17		BP	OE
	Risk Category	BSE-1E	BSE-2E
Basic Performance	1&1	Life Safety	Collapse
Objective	(Typical buildings)	Structural	Prevention
	(-)	Performance	Structural
for Existing Buildings		Life Safety	Performance
(BPOE)		Nonstructural	Hazards Reduced
		Performance	Nonstructural
			Performance
		Damage Control	Limited Safety
Screen for both Life Safety and	(Schools,	Structural	Structural
Hazards Reduced.	Assembly)	Performance	Performance
		Position Retention	Hazards Reduced
Do calculations for HR NS		Nonstructural	Nonstructural
components at BSE-2E.		Performance	Performance
	IV	Immediate	Life Safety
	(Essential facilities,	Occupancy	Structural
	i.e. hospitals &	Structural	Performance
	EOCs)	Performance	Hazards Reduced
		Position Retention	Nonstructural
		Nonstructural	Performance
		Performance	

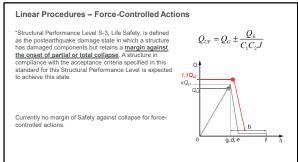
Overview - Chapters 4 and 17 Tier 1 Screening and Checklists

- Impacts of BPOE changes
- Checklist reorganization
- Checklist updates
- Quick Check acceptance criteria

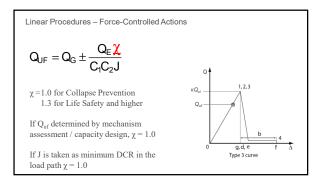
Updates for BPOE

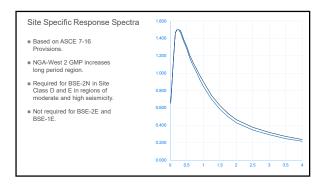

- ASCE 41-13: Checklists completed for LS in BSE-1E, then deemed to comply with CP in BSE-
- ASCE 41-17: Checklists completed for CP in BSE-2E, then deemed to comply with LS in BSE-
- Therefore, no fundamental change to structural checklists, just rename LS checklists to CP checklists

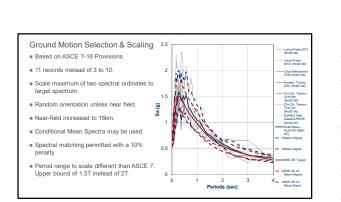

1417.1.24-5CP 346-546eyCollapse Prevention Basic Configuration Checklist This Basic Configuration Checklist shall be completed for all building types, except buildings in Very Low Scismicity, being evaluated to the 146-546eyCollapse Prevention Performance Level. Once this checklist has been completed, complete the appropriate building type checklist for the desired Performance Level as shown in Table 4-344ey. Ther I screening shall include on-site investigation and condition assessment as required by Scient 4.2.1.

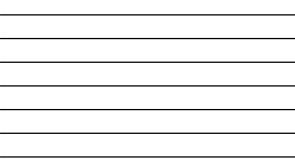

Hazards Reduced added to nonstructural checklists

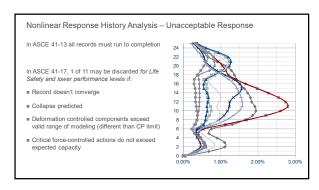
Quick Check Acceptance Criteria

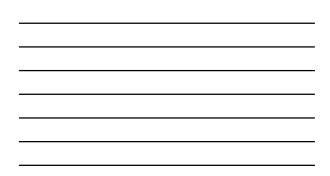

- Provide Ms factors for 3 performance levels: IO, LS, and CP
- = IO & LS for RC IV
- = CP for RC II
- = Interpolate between CP and LS for RC III
- ASCE 41-13 LS & IO Ms factors reduced by ~25% to account for the elimination of the "75% factor" from 31-03 to 41-13
- Add new Ms factors for CP, set at ~1.5xLS.....why?
- Life Safety performance has traditionally be considered as a 25 percent margin against collapse (based on a detailed quantitative analysis)
 The failure rate for buildings undergoing Tier 1 screening generally has been perceived to be too low
- = The ratio to BSE-2E to BSE-1E ground motions in the western US is typically 1.5 to 2.5
- = Consistency between Ms and m factors not a primary consideration (system vs element)

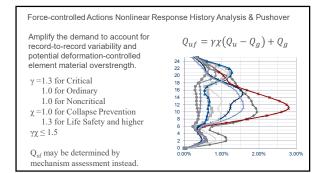


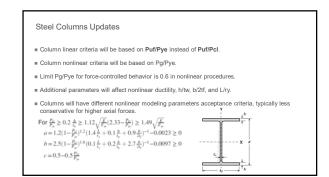


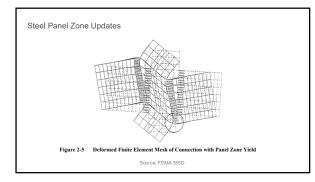




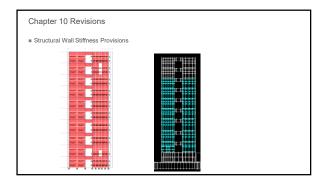








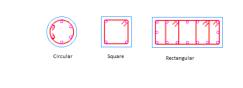
Steel Panel Zone Updates


- In ASCE 41-17, panel zone m-factors and acceptance criteria can reduce due to axial force in column.
- Nonlinear criteria also has plastic deformation limit based on whether beam flange welds used notch-tough weldmetal.

$$\frac{0.092F_y}{G}\left(\alpha + \frac{3.45}{\alpha}\right)\left[1 - \left(\frac{|P|}{2P_{ye,cf}}\right)^2\right] \le 0.5\gamma_{p,j}$$

Likely ASCE 41-23 issue: Are panel zone m-factors are too generous for pre-Northridge connections?

Chapter 10 (Concrete) Background


- Chapter 10 maintained by ACI 369 committee
- ACI 369 report changed to mandatory language to be incorporated in ASCE 41
- ACI 369 committee votes on changes before going to ASCE 41 committee ballot

Chapter 10 Revisions

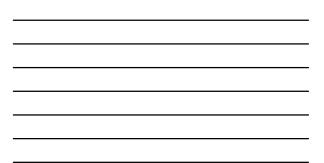
- Modeling Parameters and Acceptance Criteria for Concrete Columns
 = No More Triple Interpolation!
- Column Tension Loads

Chapter 10 Revisions

- Existing Anchorage Testing Requirements
 Applies to roof to wall anchors
- Core Testing Requirements
- Lower bound may be based on Section 6.4.3 of ACI 562-13 with a minimum of 4 tests

Anchor Testing (Usual Data Collection)

- <u>Cast-in-place or post-installed anchors</u> shall be classified in groups of similar type, size, geometry and structural use.
- In groups of anchors used for out-of-plane wall anchorage and in groups of anchors whose failure in tension or shear would cause the structure not to meet the selected Performance Objective. St\u00f6 of the anchors with a minimum of three anchors of each anchor group shall be tested in-place in tension to establish an available strength, construction quality or both.
- The test load shall be specified by the licensed design professional and shall be based on the anticipated demand or strength in accordance with available construction information.
- Testing of the anchors to failure is not required and a test load lower than the expected failure load shall be permitted



- Infill In-Plane Acceptance Criteria
- Materials Condition Assessment and Enhancement Updates
- $$\begin{split} & \operatorname{Kaus}(1) \leftarrow \frac{1}{2} \sum_{i=1}^{M} \operatorname{Kaus}(h_{i} + \int_{0}^{1} \frac{1}{2} \operatorname$$

Chapter 12 (Wood) Revisions

- Diaphragm Strength Reduction for 2 inch Framing
- Shear Wall Strength Reduction for 2 inch Framing
- 12.4.4.6.2 Strength of Wood Structural Panel Sheathing or Siding Shear Walls....
- For existing wood structural panel shear walls framed with 2-in. nominal framing and 10d common or galvanized box nails at adjoining panel edges where 3-in. nominal framing is required per AWC SDPWS, the expected strength shall not be taken as greater than 0.90 times the expected strength associated with use of 3-in. nominal framing at adjoining panel edges.
- The 0.90 factor is based on the 10% strength reduction recognized in the 1979 UBC for such shear walls having sheathing nailed with 10d common (0.148" shank diameter) or galvanized box nails and is also applicable for longer 12d common nails of the same diameter.

