

SEL

Major Changes to Wind Maps in ASCE 7-16

- 1. Separate return period maps for Risk Category III and IV structures
- 2. New conterminous US maps, incorporating
 - Completely new analysis of non-hurricane winds
 - Revised hurricane modeling effecting northeast
 - Revised/Corrected Special Wind Regions
- 3. Revised Alaska maps
- 4. New maps for Hawaii, incorporating topographic effects
- 5. Web-based tools for wind speed determination

1. MRI for Design Wind Speed Maps

- Reliability analysis conducted to estimate return periods needed to achieve target reliability indexes
 - Analysis conducted by Dr. Terri McAllister, ASCE 7 Load Combinations Subcommittee

Risk Category	Target Beta (Ch. 1)	ASCE 7-10 Map MRI (years)	ASCE 7-16 Map MRI (years)
I.	2.50	300	300
П	3.00	700	700
III	3.25	1,700	1,700
IV	3.50	1,700	3,000

2. New Conterminous US Wind Speed Maps

- Incorporated analysis of additional wind climate data for non-hurricane winds
 - More stations and more years of data
 - Account for terrain exposure at anemometer locations
- Revised inland winds developed using threshold exceedance approach (Pintar and Simiu, 2014)
 - Thunderstorms ~ thunderday methodology
 - Extra-tropical storm modeling ~ Method of storms (Cook, 1983)
- Updated hurricane model for northeast coast
- Replaced all 7 existing maps
 - Standard (300, 700, 1700-yr) and Commentary (10, 25, 50, 100-yr)
- Added a new 3,000-year map for RC IV structures

Improved Data Analysis: Accounting for Storm Type

- Non-hurricane winds are broken down into thunderstorm and non-thunderstorm for analysis, then recombined as statistically independent
- Separate distributions for different storm types (Lombardo et al., 2009)
- Similar to how hurricane and non-hurricane winds are treated separately in the previous ASCE 7 map analyses

% of Annual Maximum Wind Speeds from Thunderstorms*

Extreme wind climate clearly dominated by different storm types in different parts of the country

*Excluding maxima from tropical cyclones

Spatial distribution of pressure coefficients

- The worst of the peak coefficients are about the same for all of these buildings. (The color bars were in all plots were made the same.)
- For two buildings of the same plan dimensions, the taller building has high magnitude pressures, which also cover larger areas.
- For buildings of the same height, but differing plan dimensions, the pressure distributions are very similar
- Thus, the distribution of enveloped pressures is primarily dependent on roof height. Plan dimensions only play a secondary role.
- Pressures vary continuously with distance from edge, so zone sizes must be chosen.
- Combining these distributions, the coefficients and roofs were modified for ASCE 7-16.

	SEE STRUCTURAL ENGINEERING INSTITUTE	Projec	ct History
	 4:12 tests on 1 Performed at the examine the im Tests performed spacing's. 	, 2 and 3 stories buildings e BLWTL at University of Wester pact h/D on roof pressure coeffic with and without surrounding bu	n Ontario early December 2005 to ients. uildings with two different
٠	 4:12 tests perfect of trees of (hip/gable 1,2 &) 	ormed in January 2006 n wind loads and velocity profile 3 story).	was examined
٠	7:12, 9:12 and • With and withou	12:12 May 2007 It trees (hip/gable 1,2 & 3 story)	
•	5:12 and 6:12 t ■ hip/gable 1, 2 & effects study.	ests performed April 2008 3 story plus an interference	

Equations for all GCp's given in Commentary

	Positive with and without overhang			
All Zones	$(GC_p) = 0.9$	for $A \leq 10$ ft ²		
	$(GC_p) = 1.3000 - 0.4000 \log A$	for $10 \le A \le 100$ ft		
	$(GC_p) = 0.5$	for $A \ge 100$ ft ²		
	Negative without overha	ng		
Zones 1, 2e,	$(GC_p) = -1.8$	for $A \le 10$ ft ²		
and 2r	$(GC_p) = -2.8000 + 1.0000 \log A$	for $10 \le A \le 100$ ft		
	$(GC_p) = -0.8$	for $A \ge 100 \text{ ft}^2$		
Zones 2n	$(GC_p) = -2.0$	for $A \le 10$ ft ²		
and 3r	$(GC_p) = -2.7686 + 0.7686 \log A$	for $10 \le A \le 200$ ft		
	$(GC_p) = -1.0$	for $A \ge 200$ ft ²		
Zone 3e	$(GC_p) = -3.2$	for $A \le 2$ ft ²		
	$(GC_p) = -3.5043 + 1.0110 \log A$	for $2 \le A \le 300$ ft ²		
	$(GC_p) = -1.0$	for $A \ge 300$ ft ²		
	Negative with overhang	ş		
Zones 1, 2e,	$(GC_p) = -2.6$	for $A \le 10$ ft ²		
and 2r	$(GC_p) = -3.6000 + 1.0000 \log A$	for $10 \le A \le 100$ ft		
	$(GC_p) = -1.6$	for $A \ge 100$ ft ²		
Zones 2n	$(GC_p) = -2.8$	for $A \le 10$ ft ²		
and 3r	$(GC_p) = -3.5686 + 0.7686 \log A$	for $10 \le A \le 200$ ft		
	$(GC_p) = -1.8$	for $A \ge 200$ ft ²		
Zone 3e	$(GC_p) = -4.0$	for $A \le 2$ ft ²		
	$(GC_p) = -4.3043 + 1.0110 \log A$	for $2 \le A \le 300$ ft ²		
	$(GC_p) = -1.8$	for $A \ge 300 \text{ ft}^2$		

Table C30	.3-7. Hip Roofs, Overhang, 7° <θ	\leq 20 $^{\circ}$ (Figure 30.3-2F)
	Negative $h/D \ge 0.8$	
Zone 1	$(GC_n) = -2.3$	for $A \leq 20$ ft ²
	$(GC_n) = -2.8584 + 0.4292 \log A$	for $20 \le A \le 100$ ft ²
	$(GC_n) = -2.0$	for $A \ge 100$ ft ²
Zone 2r	$(GC_{p}) = -2.9$	for $A \leq 10$ ft ²
	$(GC_n) = -3.3612 + 0.4612 \log A$	for $10 \le A \le 200$ ft ²
	$(GC_n) = -2.3$	for $A \ge 200$ ft ²
Zones 2e	$(GC_{n}) = -3.1$	for $A \leq 10$ ft ²
	$(GC_n) = -3.6380 + 0.5380 \log A$	for $10 \le A \le 200 \text{ ft}^2$
	$(GC_p) = -2.4$	for $A \ge 200$ ft ²
Zones 3	$(GC_{p}) = -3.7$	for $A \leq 10$ ft ²
	$(GC_n) = -5.0835 + 1.3835 \log A$	for $10 \le A \le 200$ ft ²
	$(GC_{n}) = -1.9$	for $A \ge 200$ ft ²
	Negative $h/D \le 0.5$	
Zone 1	$(GC_n) = -1.8$	for $A \leq 20$ ft ²
	$(GC_p) = -1.4277 - 0.2861 \log A$	for $20 \le A \le 100$ ft ²
	$(GC_n) = -2.0$	for $A \ge 100$ ft ²
Zones 2r	$(GC_p) = -2.9$	for $A \leq 10$ ft ²
	$(GC_p) = -3.3612 + 0.4612 \log A$	for $10 \le A \le 200$ ft ²
	$(GC_p) = -2.3$	for $A \ge 200$ ft ²
Zones 2e	$(GC_n) = -2.3$	for $A \leq 10$ ft ²
	$(GC_p) = -2.4537 + 0.1537 \log A$	for $10 \le A \le 200$ ft ²
	$(GC_p) = -2.1$	for $A \ge 200$ ft ²
Zone 3	$(GC_p) = -2.9$	for $A \leq 10$ ft ²
	$(GC_p) = -3.8992 + 0.9992 \log A$	for $10 \le A \le 200$ ft ²
	$(GC_p) = -1.6$	for $A \ge 200$ ft ²
	-	

	Table C30.3-9. Hip Roofs, $27^{\circ} < \theta \le 45^{\circ}$, No Overhang (Figure 30.3-2)	1)			
	Positive	_			
All Zones	$(GC_p) = 0.9$	for $A \leq 2$ ft ²			
	$(GC_p) = 1.0063 - 0.3532 \log A$	for $2 \le A \le 100$ ft ²			
	$(GC_p) = 0.3$	for $A \ge 100 \text{ ft}^2$			
Zone 1	Negative	6 4 4 10 62			
	$(GC_p) = -0.6175 - 0.02000$	for $A \leq 10$ ft ²			
	$(GC_p) = -1.0191 - 0.02500 + [0.4016 + 0.00500] \log A$	for $10 \le A \le 200$ ft ²			
7000 20	$(GC_p) = -0.0950 - 0.01350$	for $A \ge 200 \text{ ff}^2$			
Zone ze	$\left[\log(280 - 50)(0.06709 - 1)\right] \begin{bmatrix} 1 - 0.06709 \\ 1 - 0.06709 \end{bmatrix}$	IOF $A \leq 2 R^{-1}$			
	$(GC_p) = -0.8000 + \left \frac{\log(200 - 50)(0.00700 - 1)}{0.301 - \log(280 - 50)} \right + \left \frac{1 - 0.00700}{0.3010 - \log(280 - 50)} \right \log A$	for $2 \le A \le [280 - 5\theta] \text{ft}^2$			
	$(GC_p) = -0.8$	for $A \ge [280 - 5\theta]$ ft ²			
Zones 2r	$(GC_p) = 1.0000 - 0.0820\theta$	for $A \leq 5$ ft ²			
	$(GC_p) = 2.0746 - 0.12610 + [0.06300 - 1.5373] \log A$	for $5 \le A \le 100$ ft ²			
	$(GC_p) = -1.0000$	for $A \ge 100 \text{ ft}^2$			
Zones 3	$(GC_p) = 1.2500 - 0.10800$	for $A \le [9 - 0.1350\theta]$ ft ²			
	$(GC_p) = \left[\frac{0.18359 - 3.8230}{\log(9 - 0.13509) - 1.6990}\right] - 1.0 + \left[\frac{2.25 - 0.10809}{\log(9 - 0.13509) - 1.6990}\right] \log A$	for $[9 - 0.1350\theta] \le A \le 50 \text{ ft}^2$			
	$(GC_{-}) = -1.0000$	for $A > 50$ ft ²			

ASCE 7-16 Wind Provisions

- Tornado Commentary
 - Tornado Wind Speeds and Probabilities
 - · Wind Pressures induced by Tornadoes vs. other Wind Storms
 - Designing for Occupant Protection
 - Designing to Minimize Building Damage
 - Designing to Maintain Building Operation
 - Designing Trussed Communication Towers for Wind-Borne Debris

